Conditioning protects C. elegans from lethal effects of enteropathogenic E. coli by activating genes that regulate lifespan and innate immunity.

نویسندگان

  • Akwasi Anyanful
  • Kirk A Easley
  • Guy M Benian
  • Daniel Kalman
چکیده

Caenorhabditis elegans exhibits avoidance behavior when presented with diverse bacterial pathogens. We hypothesized that exposure to pathogens might not only cause worms to move away but also simultaneously activate pathways that promote resistance to the pathogen. We show that brief exposure to virulent or avirulent strains of the bacterial pathogen enteropathogenic E. coli (EPEC) "immunizes"C. elegans to survive a subsequent exposure that would otherwise prove lethal, a phenomenon we refer to as "conditioning." Conditioning requires dopaminergic neurons; the p38 MAP kinase pathway, which regulates innate immunity; and the insulin/IGFR pathway, which regulates lifespan. Our findings suggest that the molecular pathways that control innate immunity and lifespan may be regulated or "conditioned" by exposure to pathogens to allow survival in noxious environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Alkaloid Compound Harmane Increases the Lifespan of Caenorhabditis elegans during Bacterial Infection, by Modulating the Nematode’s Innate Immune Response

The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin-producing Escherichia coli O157:H7 strain EDL933 and several other bacterial pathogens. This was shown t...

متن کامل

A Functional Genomic Screen for Evolutionarily Conserved Genes Required for Lifespan and Immunity in Germline-Deficient C. elegans

The reproductive system regulates lifespan in insects, nematodes and vertebrates. In Caenorhabditis elegans removal of germline increases lifespan by 60% which is dependent upon insulin signaling, nuclear hormone signaling, autophagy and fat metabolism and their microRNA-regulators. Germline-deficient C. elegans are also more resistant to various bacterial pathogens but the underlying molecular...

متن کامل

A Family of Indoles Regulate Virulence and Shiga Toxin Production in Pathogenic E. coli

Enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC) are intestinal pathogens that cause food and water-borne disease in humans. Using biochemical methods and NMR-based comparative metabolomics in conjunction with the nematode Caenorhabditis elegans, we developed a bioassay to identify secreted small molecules produced by these pathogen...

متن کامل

Killer Cell Immunoglobulin-Like Receptors Influence the Innate and Adaptive Immune Responses

Natural killer (NK) cells are a subset of lymphocytes which play a crucial role in early innate immune response against infection and tumor transformation. Furthermore, they secrete interferon-γ (IFN-γ) and tumor necrosis factor (TNF) prompting adaptive immu-nity. NK cells distinguish the unhealthy cells from the healthy ones through an array of cell-surface receptors. Human NK cells use inhibi...

متن کامل

Determination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans

Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell host & microbe

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 2009